Analisis Resiko Obesitas Berdasarkan Aktivitas Fisik: Implementasi Metode Artificial Intelligence Machine Learning

Autor(s): Syam Hardwis, Jajat Jajat
DOI: 10.25157/jkor.v10i2.16884

Abstract

Obesitas telah menjadi masalah global yang dihadapi oleh berbagai negara di seluruh dunia. Aktivitas fisik dan perilaku sedentari dianggap sebagai faktor kunci yang berkontribusi terhadap terjadinya obesitas. Penelitian ini bertujuan untuk menganalisis hubungan antara aktivitas fisik dan perilaku sedentari dengan indeks massa tubuh (BMI) menggunakan pendekatan algoritma machine learning. Sebanyak 280 mahasiswa Universitas Pendidikan Indonesia dari berbagai program studi berpartisipasi dalam penelitian ini, terdiri atas 101 laki-laki dan 179 perempuan berusia 17–23 tahun. Aktivitas fisik diukur menggunakan accelerometer Actigraph GT3X. Penelitian ini menggunakan tujuh algoritma machine learning, yaitu k-nearest neighbours (KNN), decision tree, random forest, dan Classification via Regression (CVR) untuk analisis risiko obesitas. Pengujian dilakukan dengan menggunakan perangkat lunak RapidMiner. Berdasarkan variabel aktivitas fisik, perilaku sedentari, dan status demografi, algoritma random forest menunjukkan akurasi tertinggi sebesar 71,09% dibanding algoritma lainnya. Demikian juga dengan sensitivitas,  algoritma random forest paling tinggi dari algoritma lainnya sebesar 37,50%. Sementara untuk spesifisitas, algoritma decision tree paling tinggi dengan 77,5%. Aktivitas fisik, total Metabolic Equivalent of Task (MET), dan durasi perilaku sedentari merupakan faktor penting dalam memprediksi risiko obesitas. Oleh karena itu, promosi aktivitas fisik dan kebijakan kampus memiliki peran krusial dalam mengurangi prevalensi obesitas di kalangan mahasiswa

Keywords

Aktivitas fisik, artificial intelligence, BMI, machine learning, obesitas

Full Text:

PDF

References

Albuquerque, D., Nóbrega, C., Manco, L., & Padez, C. (2017). The contribution of genetics and environment to obesity. British medical bulletin, 123(1), 159-173.

Al-Jarrah, O. Y., Yoo, P. D., Muhaidat, S., Karagiannidis, G. K., & Taha, K. (2015). Efficient machine learning for big data: A review. Big Data Research, 2(3), 87-93.

Bray, G. A., Frühbeck, G., Ryan, D. H., & Wilding, J. P. (2016). Management of obesity. The Lancet, 387(10031), 1947-1956.

Cheng, X., Lin, S. Y., Liu, J., Liu, S., Zhang, J., Nie, P., ... & Xue, H. (2021). Does physical activity predict obesity—A machine learning and statistical method-based analysis. International Journal of environmental research and public Health, 18(8), 3966.

Chobot, A., Górowska‐Kowolik, K., Sokołowska, M., & Jarosz‐Chobot, P. (2018). Obesity and diabetes—Not only a simple link between two epidemics. Diabetes/metabolism research and reviews, 34(7), e3042.

Chrostowska, M., Szyndler, A., Hoffmann, M., & Narkiewicz, K. (2013). Impact of obesity on cardiovascular health. Best practice & research Clinical endocrinology & metabolism, 27(2), 147-156.

Dugan, T. M., Mukhopadhyay, S., Carroll, A., & Downs, S. (2015). Machine learning techniques for prediction of early childhood obesity. Applied clinical informatics, 6(03), 506-520.

Egger, G., & Dixon, J. (2014). Beyond obesity and lifestyle: a review of 21st century chronic disease determinants. BioMed research international, 2014(1), 731685.

Ferdowsy, F., Rahi, K. S. A., Jabiullah, M. I., & Habib, M. T. (2021). A machine learning approach for obesity risk prediction. Current Research in Behavioral Sciences, 2, 100053.

Gawlik, K., Zwierzchowska, A., & Celebańska, D. (2018). Impact of physical activity on obesity and lipid profile of adults with intellectual disability. Journal of Applied Research in Intellectual Disabilities, 31(2), 308-311.

Golden, A., & Kessler, C. (2020). Obesity and genetics. Journal of the American Association of Nurse Practitioners, 32(7), 493-496..

Hruby, A., Manson, J. E., Qi, L., Malik, V. S., Rimm, E. B., Sun, Q., ... & Hu, F. B. (2016). Determinants and consequences of obesity. American journal of public health, 106(9), 1656-1662.

Huang, T. T., Drewnowski, A., Kumanyika, S. K., & Glass, T. A. (2009). A systems-oriented multilevel framework for addressing obesity in the 21st century. Preventing chronic disease, 6(3).

Jiang, L., Wu, Z., Xu, X., Zhan, Y., Jin, X., Wang, L., & Qiu, Y. (2021). Opportunities and challenges of artificial intelligence in the medical field: current application, emerging problems, and problem-solving strategies. Journal of International Medical Research, 49(3), 03000605211000157.

Jiang, S. Z., Lu, W., Zong, X. F., Ruan, H. Y., & Liu, Y. (2016). Obesity and hypertension. Experimental and therapeutic medicine, 12(4), 2395-2399.

Koolhaas, C. M., Dhana, K., Schoufour, J. D., Ikram, M. A., Kavousi, M., & Franco, O. H. (2017). Impact of physical activity on the association of overweight and obesity with cardiovascular disease: The Rotterdam Study. European journal of preventive cardiology, 24(9), 934-941.

Krupa-Kotara, K., & Dakowska, D. (2021). Impact of obesity on risk of cancer. Central European Journal of Public Health, 29(1), 38-44.

Morales, M. E., & Berkowitz, S. A. (2016). The relationship between food insecurity, dietary patterns, and obesity. Current nutrition reports, 5, 54-60.

Myers, J., Kokkinos, P., & Nyelin, E. (2019). Physical activity, cardiorespiratory fitness, and the metabolic syndrome. Nutrients, 11(7), 1652.

Nguyen, T., & Lau, D. C. (2012). The obesity epidemic and its impact on hypertension. Canadian Journal of Cardiology, 28(3), 326-333.

Pan, X. F., Wang, L., & Pan, A. (2021). Epidemiology and determinants of obesity in China. The lancet Diabetes & endocrinology, 9(6), 373-392.

Peng, J., Jury, E. C., Dönnes, P., & Ciurtin, C. (2021). Machine learning techniques for personalised medicine approaches in immune-mediated chronic inflammatory diseases: applications and challenges. Frontiers in pharmacology, 12, 720694.

Rohde, K., Keller, M., la Cour Poulsen, L., Blüher, M., Kovacs, P., & Böttcher, Y. (2019). Genetics and epigenetics in obesity. Metabolism, 92, 37-50.

Rondanelli, M., Klersy, C., Terracol, G., Talluri, J., Maugeri, R., Guido, D., ... & Perna, S. (2016). Whey protein, amino acids, and vitamin D supplementation with physical activity increases fat-free mass and strength, functionality, and quality of life and decreases inflammation in sarcopenic elderly. The American journal of clinical nutrition, 103(3), 830-840.

Safaei, M., Sundararajan, E. A., Driss, M., Boulila, W., & Shapi'i, A. (2021). A systematic literature review on obesity: Understanding the causes & consequences of obesity and reviewing various machine learning approaches used to predict obesity. Computers in biology and medicine, 136, 104754.

Sallis, J. F., Cerin, E., Kerr, J., Adams, M. A., Sugiyama, T., Christiansen, L. B., ... & Owen, N. (2020). Built environment, physical activity, and obesity: findings from the international physical activity and environment network (IPEN) adult study. Annual review of public health, 41(1), 119-139.

Saputra, D. S., Jajat., Damayanti, I., Sultoni, K., Ruhayati, Y., & Rahayu, N. I. (2024). Prediksi BMI Berdasarkan Level Aktivitas Fisik dengan Metode Analisis Machine Learning. Jurnal Pendidikan Kesehatan Rekreasi, 10(1), 165-175.

Schmitz, K. H., Neuhouser, M. L., Agurs-Collins, T., Zanetti, K. A., Cadmus-Bertram, L., Dean, L. T., & Drake, B. F. (2013). Impact of obesity on cancer survivorship and the potential relevance of race and ethnicity. Journal of the National Cancer Institute, 105(18), 1344-1354.

Seravalle, G., & Grassi, G. (2024). Obesity and hypertension. Obesity: Clinical, Surgical and Practical Guide, 65-79.

Sominsky, L., & Spencer, S. J. (2014). Eating behavior and stress: a pathway to obesity. Frontiers in psychology, 5, 434.

Specchia, M. L., Veneziano, M. A., Cadeddu, C., Ferriero, A. M., Mancuso, A., Ianuale, C., ... & Ricciardi, W. (2015). Economic impact of adult obesity on health systems: a systematic review. The European Journal of Public Health, 25(2), 255-262.

Spieker, E. A., & Pyzocha, N. (2016). Economic impact of obesity. Primary Care: Clinics in Office Practice, 43(1), 83-95.

Strasser, B. (2013). Physical activity in obesity and metabolic syndrome. Annals of the New York Academy of Sciences, 1281(1), 141-159.

Sullivan, P. W., Ghushchyan, V. H., & Ben-Joseph, R. (2008). The impact of obesity on diabetes, hyperlipidemia and hypertension in the United States. Quality of Life Research, 17, 1063-1071.

Sweatt, K., Garvey, W. T., & Martins, C. (2024). Strengths and Limitations of BMI in the Diagnosis of Obesity: What is the Path Forward?. Current Obesity Reports, 13(3), 584-595.

Swift, D. L., McGee, J. E., Earnest, C. P., Carlisle, E., Nygard, M., & Johannsen, N. M. (2018). The effects of exercise and physical activity on weight loss and maintenance. Progress in cardiovascular diseases, 61(2), 206-213.

Triantafyllidis, A., Polychronidou, E., Alexiadis, A., Rocha, C. L., Oliveira, D. N., da Silva, A. S., ... & Tzovaras, D. (2020). Computerized decision support and machine learning applications for the prevention and treatment of childhood obesity: A systematic review of the literature. Artificial Intelligence in Medicine, 104, 101844.

Van Cauwenberg, J., De Bourdeaudhuij, I., De Meester, F., Van Dyck, D., Salmon, J., Clarys, P., & Deforche, B. (2011). Relationship between the physical environment and physical activity in older adults: a systematic review. Health & place, 17(2), 458-469.

Wiklund, P. (2016). The role of physical activity and exercise in obesity and weight management: Time for critical appraisal. Journal of sport and health science, 5(2), 151-154.

Wyatt, S. B., Winters, K. P., & Dubbert, P. M. (2006). Overweight and obesity: prevalence, consequences, and causes of a growing public health problem. The American journal of the medical sciences, 331(4), 166-174.

Yang, L., Cao, C., Kantor, E. D., Nguyen, L. H., Zheng, X., Park, Y., ... & Cao, Y. (2019). Trends in sedentary behavior among the US population, 2001-2016. Jama, 321(16), 1587-1597.

Zalesin, K. C., Franklin, B. A., Miller, W. M., Peterson, E. D., & McCullough, P. A. (2008). Impact of obesity on cardiovascular disease. Endocrinology and metabolism clinics of North America, 37(3), 663-684.

Zhou, L., Pan, S., Wang, J., & Vasilakos, A. V. (2017). Machine learning on big data: Opportunities and challenges. Neurocomputing, 237, 350-361.

Refbacks

  • There are currently no refbacks.