VARIAN METODE SECANT HALLEY NEWTON BEBAS TURUNAN KEDUA DENGAN ORDE KONVERGENSI ENAM DAN KONVERGEN EMPAT
Sari
Teks Lengkap:
PDFReferensi
Bartle, R. G., & Sherbert, D. R. (2011). Introduction to real analaysis fourth edition. John Wiley & Sons, Inc.
Chasnov, J. R. (2012). Introduction to numerical methods. The Hong Kong University of Science and Technology.
Frontini, M., & Sormani, E. (2003). Some variant of newton’s method with third-order convergence. Applied Mathematics and Computation, 140(2–3), 419–426. https://doi.org/https://doi.org/10.1016/S0096-3003(02)00238-2
Gautschi, W. (2012). Numerical analysis, second edition. Springer New York Dordrecht Heidelberg London.
Han, J., He, H., & Xu, A. (2010). A second-derivative -free variant of halley’s method with sixth-order convergence. Plants, 3(2), 195–203.
Haqueqy, N., Silalahi, B. P., & Sitanggang, I. S. (2016). Uji komputasi algoritme varian metode newton pada permasalahan optimasi nonlinear tanpa kendala. Journal of Mathematics and Its Applications, 15(2), 63. https://doi.org/10.29244/jmap.15.2.63-76.
Jain, D. (2013). Families of newton-like methods with fourth-order convergence. International Journal of Computer Mathematics, 90(5), 1072–1082.
Jisheng, K., Yitian, L., & Xiuhua, W. (2006). Modified halley’s method free from second derivative. Applied Mathematics and Computation, 183(1), 704–708. https://doi.org/https://doi.org/10.1016/j.amc.2006.05.097.
Kumar, M., Singh, A. K., & Srivastava, A. (2013). Various newton-type iterative methods for solving nonlinear equations. Journal of the Egyptian Mathematical Society, 21(3), 334–339. https://doi.org/10.1016/j.joems.2013.03.001.
McDougall, T. J., & Wotherspoon, S. J. (2014). A simple modification of newton’s method to achieve convergence of order 1 + √2. Applied Mathematics Letters, 29, 20–25. https://doi.org/10.1016/j.aml.2013.10.008.
Noor, K. I., & Noor, M. A. (2007). Predictor-corrector halley method for nonlinear equations. Applied Mathematics and Computation, 188(2), 1587–1591. https://doi.org/10.1016/j.amc.2006.11.023.
Noor, M. A., Khan, W. A., & Hussain, A. (2007). A new modified halley method without second derivatives for nonlinear equation. Applied Mathematics and Computation, 189(2), 1268–1273.
Özban, A. . (2004). Some new variants of newton’s method. Applied Mathematics Letters, 17(6), 677–682. https://doi.org/10.1016/j.
Rahimi, B., Ghanbari, B., & Porshokouhi, M. G. (2011). Some third-order modifications of newton ’ s method. Gen. Math. Notes, 3(1), 116–123.
Singh, M. K. (2009). A six-order variant of newton’s method for solving nonlinear equations. Computational Methods in Science and Technology, 15(2), 185–193. https://doi.org/10.12921/cmst.2009.15.02.185-193.
Utami, N. N. R., Widana, I. N., & Asih, N. M. (2013). Perbandingan solusi sistem persamaan nonlinear menggunakan metode newton-raphson dan metode jacobian. E-Jurnal Matematika, 2(2), 11. https://doi.org/10.24843/mtk.2013.v02.i02.p032.
Wang, P. (2011). A third-order family of newton-like iteration methods for solving nonlinear equations. Journal of Numerical Mathematics and Stochastics, 3(1), 13–19.
Weerakoon, S., & Fernando, T. G. I. (2000). A weighted variant family of newton’s method with accelerated third-order convergence. Applied Mathematics and Computation, 13(2), 87–93. https://doi.org/10.1016/j.amc.2006.08.041.
Zhou, X. (2007). A class of newton’s methods with third-order convergence. Applied Mathematics Letters, 20(9), 1026–1030. https://doi.org/10.1016/j.aml.2006.09.010.
DOI: http://dx.doi.org/10.25157/teorema.v7i1.5669
Refbacks
- Saat ini tidak ada refbacks.
##submission.copyrightStatement##
Laman Teorema: https://jurnal.unigal.ac.id/index.php/teorema/index
Terindek: