VARIAN METODE SECANT HALLEY NEWTON BEBAS TURUNAN KEDUA DENGAN ORDE KONVERGENSI ENAM DAN KONVERGEN EMPAT

Djihad Wungguli, Ghivahri Sidik Mokoagow, Nurwan Nurwan, Agusyarif Rezka Nuha

Sari


Artikel ini membahas varian metode Secant Halley bebas turunan kedua yang di modifikasi dari kombinasi metode Secant dan modifikasi prediktor-korektor Halley. Metode baru yang dihasilkan adalah metode Secant-Halley dan metode Secant-Halley-Newton dengan orde kekonvergenan kedua metode tersebut adalah konvergen empat  dan enam.   Metode Secant-Halley memiliki total evaluasi fungsi sebanyak empat kali per iterasi, sedangkan metode Secant-Halley Newton memiliki total evaluasi fungsi sebanyak lima kali per iterasi dengan indeks efisiensi sebesar 1.414 untuk metode Secant-Halley dan sebesar 1.431 untuk metode Secant-Halley-Newton. Selanjutnya dari hasil uji komputasi menunjukkan bahwa kedua metode yang diusulkan lebih baik dari metode pembandingnya. Metode yang diusulkan unggul dari segi orde konvergensi dan tanpa menggunakan turunan kedua dari suatu fungsi

Teks Lengkap:

PDF

Referensi


Bartle, R. G., & Sherbert, D. R. (2011). Introduction to real analaysis fourth edition. John Wiley & Sons, Inc.

Chasnov, J. R. (2012). Introduction to numerical methods. The Hong Kong University of Science and Technology.

Frontini, M., & Sormani, E. (2003). Some variant of newton’s method with third-order convergence. Applied Mathematics and Computation, 140(2–3), 419–426. https://doi.org/https://doi.org/10.1016/S0096-3003(02)00238-2

Gautschi, W. (2012). Numerical analysis, second edition. Springer New York Dordrecht Heidelberg London.

Han, J., He, H., & Xu, A. (2010). A second-derivative -free variant of halley’s method with sixth-order convergence. Plants, 3(2), 195–203.

Haqueqy, N., Silalahi, B. P., & Sitanggang, I. S. (2016). Uji komputasi algoritme varian metode newton pada permasalahan optimasi nonlinear tanpa kendala. Journal of Mathematics and Its Applications, 15(2), 63. https://doi.org/10.29244/jmap.15.2.63-76.

Jain, D. (2013). Families of newton-like methods with fourth-order convergence. International Journal of Computer Mathematics, 90(5), 1072–1082.

Jisheng, K., Yitian, L., & Xiuhua, W. (2006). Modified halley’s method free from second derivative. Applied Mathematics and Computation, 183(1), 704–708. https://doi.org/https://doi.org/10.1016/j.amc.2006.05.097.

Kumar, M., Singh, A. K., & Srivastava, A. (2013). Various newton-type iterative methods for solving nonlinear equations. Journal of the Egyptian Mathematical Society, 21(3), 334–339. https://doi.org/10.1016/j.joems.2013.03.001.

McDougall, T. J., & Wotherspoon, S. J. (2014). A simple modification of newton’s method to achieve convergence of order 1 + √2. Applied Mathematics Letters, 29, 20–25. https://doi.org/10.1016/j.aml.2013.10.008.

Noor, K. I., & Noor, M. A. (2007). Predictor-corrector halley method for nonlinear equations. Applied Mathematics and Computation, 188(2), 1587–1591. https://doi.org/10.1016/j.amc.2006.11.023.

Noor, M. A., Khan, W. A., & Hussain, A. (2007). A new modified halley method without second derivatives for nonlinear equation. Applied Mathematics and Computation, 189(2), 1268–1273.

Özban, A. . (2004). Some new variants of newton’s method. Applied Mathematics Letters, 17(6), 677–682. https://doi.org/10.1016/j.

Rahimi, B., Ghanbari, B., & Porshokouhi, M. G. (2011). Some third-order modifications of newton ’ s method. Gen. Math. Notes, 3(1), 116–123.

Singh, M. K. (2009). A six-order variant of newton’s method for solving nonlinear equations. Computational Methods in Science and Technology, 15(2), 185–193. https://doi.org/10.12921/cmst.2009.15.02.185-193.

Utami, N. N. R., Widana, I. N., & Asih, N. M. (2013). Perbandingan solusi sistem persamaan nonlinear menggunakan metode newton-raphson dan metode jacobian. E-Jurnal Matematika, 2(2), 11. https://doi.org/10.24843/mtk.2013.v02.i02.p032.

Wang, P. (2011). A third-order family of newton-like iteration methods for solving nonlinear equations. Journal of Numerical Mathematics and Stochastics, 3(1), 13–19.

Weerakoon, S., & Fernando, T. G. I. (2000). A weighted variant family of newton’s method with accelerated third-order convergence. Applied Mathematics and Computation, 13(2), 87–93. https://doi.org/10.1016/j.amc.2006.08.041.

Zhou, X. (2007). A class of newton’s methods with third-order convergence. Applied Mathematics Letters, 20(9), 1026–1030. https://doi.org/10.1016/j.aml.2006.09.010.




DOI: http://dx.doi.org/10.25157/teorema.v7i1.5669

Refbacks

  • Saat ini tidak ada refbacks.


##submission.copyrightStatement##

Laman Teorema: https://jurnal.unigal.ac.id/index.php/teorema/index

Terindek: