Anti Turunan Bilangan Yang Tak Terintegralkan Menggunakan Phyton
Sari
Teks Lengkap:
PDFReferensi
Balzarotti, G. & Lava, P. P. (2013). La derivate aritmetica ; Alla scoperta di un nuovo approcio alla teoria dei numeri, Milan : Hoepli.
Barbeu, E. J. (1961). Remarks on an arithmetic derivative. Canadian Mathematical Bulletin. 4(2), 117–122.
Kovic, J.(2012). The Arithmetic Derivative and Anti Derivative. Journal of Integer Sequences, vol. 15, article 12.3.8.
Merzbach, U. C. & Boyer, C. B. (2011). A History of Mathematics, Third Edition, USA: John Wiley & Sons.
Rosen, K. H. (2012). Discrete Mathematics and Its Applications, 7th Edition, New York: McGraw-Hill.
Sandhu, A. (2006). An Exploration of the Arithmetic Derivative. Final Research Report, University of Arizona.
Stillwell, J. (2010) Mathematics and Its History, Third Edition, USA: Springer Science & Business Media.
Ufnarovski, V. & Ahlander, B. (2003) “How to Differentiate a Number”, Journal of Integer Sequences, vol. 6, article 03.3.4.
DOI: http://dx.doi.org/10.25157/teorema.v9i1.12728
Refbacks
- Saat ini tidak ada refbacks.
##submission.copyrightStatement##
Laman Teorema: https://jurnal.unigal.ac.id/index.php/teorema/index
Terindek: