Berpikir Specializing-Generalizing Siswa dalam Menyelesaikan Masalah Barisan dan Deret Aritmetika

Nella Lorenza, Sudirman Sudirman, Susiswo Susiswo

Sari


Berpikir specializing-generalizing merupakan pasangan proses berpikir matematis yang sangat penting dalam proses pembelajaran matematika. Berpikir specializing adalah berpikir dengan cara memulai dari hal-hal khusus, sedangkan berpikir generalizing adalah berpikir yang mengarah ke bentuk umum yang didasarkan pada specializing. Penerapan berpikir specializing-generalizing dapat menjadi strategi efektif bagi guru untuk meningkatkan kemampuan berpikir matematis siswa dalam menangani berbagai masalah.  Tujuan penelitian  untuk mendeskripsikan bentuk-bentuk berpikir specializing-generalizing siswa dalam menyelesaikan masalah barisan dan deret aritmetika. Metode penelitian ini merupakan penelitian kualitatif deskriptif dengan pendekatan studi kasus. Subjek dalam penelitian ini adalah 2 siswa kelas X sekolah menengah atas yang berhasil menyelesaikan masalah barisan dan deret aritmetika. Instrumen yang digunakan adalah tes dan wawancara. Data dalam penelitian ini adalah hasil pekerjaan subjek dan hasil transkrip wawancara. Hasil penelitian menunjukkan bahwa ditemukan dua bentuk berpikir specializing-generalizing dalam menyelesaikan masalah barisan dan deret aritmetika, yaitu representasi skematis eksplisit-implisit dan representasi skematis implisit-eksplisit. Hasil penelitian ini diharapkan dapat memberikan kontribusi berharga bagi guru matematika dalam merancang pembelajaran yang lebih bermakna.     Kata kunci: Berpikir matematis, specializing-generalizing, masalah barisan dan deret aritmetika

Teks Lengkap:

PDF

Referensi


Abidin, Z. (2017). Filsafat dan Pemecahan Masalah Matematika: Konstruksi Intuisi dalam Pemecahan Masalah Divergent Berdasarkan Gaya Kognitif Field Independent dan Field Dependent. Malang: Inteligensia Media.

Anwar, R. B., Purwanto, P., As’Ari, A. R., Sisworo, S., & Rahmawati, D. (2019). The Process of Schematic Representation in Mathematical Problem Solving. Journal of Physics: Conference Series, 1157(3), 6–11. https://doi.org/10.1088/1742-6596/1157/3/032075

Anwar, R. B., & Rahmawati, D. (2018). Students’ Thinking Process in Creating Schematic Representation. AKSIOMA: Jurnal Program Studi Pendidikan Matematika, 7(2), 300–307.

Anwar, R. B., & Rahmawati, D. (2022). Needs Analysis for The Development of Mathematics Statistics I-Module Based on Schematic Representation. Education Quarterly Reviews, 5(4), 96–100. https://doi.org/10.31014/aior.1993.05.04.575

Anwar, R. B., Rahmawati, D., & Supriyatun, S. E. (2021). Effectiveness of Schematic Representation in Solving Word Problem. AKSIOMA: Jurnal Program Studi Pendidikan Matematika, 10(1), 96–104.

Anwar, R. B., Rahmawati, D., & Widjajanti, K. (2019). Schematic Representation: How Students Creating It?. Jurnal Matematika Dan Pembelajaran, 7(1), 1–21.

Creswell, J. W. (2012). Educational Research: Planning, Conducting and Evaluating Quantitative and Qualitative Research. In Pearson Education (4th ed.). Pearson Education.

Fagnant, A., & Vlassis, J. (2013). Schematic Representations in Arithmetical Problem Solving: Analysis of Their Impact on Grade 4 Students. Educational Studies in Mathematics, 84(1), 149–168. https://doi.org/10.1007/s10649-013-9476-4

Faizah, S., Nusantara, T., Sudirman, S., & Rahardi, R. (2020). Exploring Students’ Thinking Process in Mathematical Proof of Abstract Algebra Based on Mason’s Framework. Journal for the Education of Gifted Young Scientists, 8(2), 871–884. https://doi.org/10.17478/JEGYS.689809

Iswari, I. F., Susanti, E., Hapizah, H., Meryansumayeka, M., & Turidho, A. (2019). Design of Problem-Solving Questions to Measure Mathematical Thinking Type Abstraction. Journal of Physics: Conference Series, 1318(1). https://doi.org/10.1088/1742-6596/1318/1/012104

Izzatin, M., Waluyo, S. B., Rochmad, & Wardono. (2020). Students’ Cognitive Style in Mathematical Thinking Process. Journal of Physics: Conference Series, 1613(1), 1–4. https://doi.org/10.1088/1742-6596/1613/1/012055

Kenjayeva, S. I. (2023). Methods for Developing Students’ Mathematical Thinking Skills in Schools. Journal of Pedagogical Inventions and Practices, 20(2770), 110–114.

Kim, B., & Jung, E. C. (2023). Three Unique Concept Explorations in Sketching Based on Conceptual Combinations in Associative Extension And Schematic Structure. Thinking Skills and Creativity, 48(10128), 1–14. https://doi.org/10.1016/j.tsc.2023.101281

Kurniati, D., & Zayyadi, M. (2018). The Critical Thinking Dispositions of Students Around Coffee Plantation Area in Solving Algebraic Problems. International Journal of Engineering and Technology(UAE), 7(2), 18–20. https://doi.org/10.14419/ijet.v7i2.10.10946

Mason, J., Burton, L., & Stacey, K. (2010). Thinking Mathematically (Second Edition). England: Pearson Education Limited.

Miles, M.B., Huberman, A.M. (1994). Qualitative Data Abalysis: Second Edition. California: SAGE Publications.

Pang, J. S., & Sunwoo, J. (2022). Design of A Pattern And Correspondence Unit to Foster Functional Thinking in An Elementary Mathematics Textbook. ZDM-Mathematics Education, 54(6), 1315–1331. https://doi.org/10.1007/s11858-022-01411-0

Singer, F. M., & Voica, C. (2022). Playing on Patterns: Is It A Case of Analogical Transfer? ZDM-Mathematics Education, 54(1), 211–229. https://doi.org/10.1007/s11858-022-01334-w

Stacey, K. (2006). What is Mathematical Thinking And Why is It Important?. Journal of Mathematical Behavior, 24(48), 341-350.

Susanti, E., Hapizah, H., Meryansumayeka, M., & Irenika, I. (2019). Mathematical Thinking of 13 Years Old Students Through Problem-Solving. Journal of Physics: Conference Series, 1318(1). https://doi.org/10.1088/1742-6596/1318/1/012103

Suseelan, M., Chew, C. M., & Chin, H. (2023). School-Type Difference Among Rural Grade Four Malaysian Students’ Performance in Solving Mathematics Word Problems Involving Higher Order Thinking Skills. International Journal of Science and Mathematics Education, 21(1), 49–69. https://doi.org/10.1007/s10763-021-10245-3

Wilkins, J. L. M., MacDonald, B. L., & Norton, A. (2022). Construction of Subitized Units is Related to The Construction of Arithmetic Units. Educational Studies in Mathematics, 109(1), 137–154. https://doi.org/10.1007/s10649-021-10076-7




DOI: http://dx.doi.org/10.25157/teorema.v9i1.12892

Refbacks

  • Saat ini tidak ada refbacks.


##submission.copyrightStatement##

Laman Teorema: https://jurnal.unigal.ac.id/index.php/teorema/index

Terindek: