STRUKTUR AFFINE ALJABAR LIE REAL DARI GRUP LIE SIMILITUDE BERDIMENSI 4
Sari
Teks Lengkap:
PDFReferensi
Burde, D. (2015). Left-symmetric algebras, or pre-lie algebras in geometry and physics. ArXiv:Math-Ph/0509016v2.
Csikós, B., & Verhóczki, L. (2007). Classification of frobenius lie algebras of dimension ≤ 6. Publicationes Mathematicae, 70(3–4), 427–51.
Diatta, A., & Manga, B. (2014). On properties of principal elements of frobenius lie algebras. J. Lie Theory, 24(3), 849–64.
Diatta, A., Manga, B., & Mbaye, A. (2020). On systems of commuting matrices, frobenius lie algebras and gerstenhaber’s theorem. ArXiv:2002.08737.
Gerstenhaber, M., & Giaquinto, A. (2009). The principal element of a frobenius lie algebra. Letters in Mathematical Physics, 88(1–3), 333–41.
Hilgert, J., & Neeb, K-H. (2012). Structure and geometry of lie groups. Monographs in Mathematics, New York: Springer.
Kurniadi, E. (2019a). Harmonic analysis for finite dimensional real frobenius lie algebras. Disertasi Doktor. Respository Nagoya University, Nagoya, Jepang.
Kurniadi, E. (2019b). Struktur affine pada aljabar lie heisenberg berdimensi 3. Prosiding Seminar Nasional Statistika, November 2019, Departemen Statistika FMIPA Unpad, 8(1).
Kurniadi, E., & Ishi, H. (2019). Harmonic analysis for 4-dimensional real frobenius lie algebras. Springer Proceeding in Mathematics & Statistics. Springer Proceeding in Mathematics & Statistics.
Ooms, A. I. (1980). On frobenius lie algebras. Journal of Algebra, 8(1), 13–52.
DOI: http://dx.doi.org/10.25157/teorema.v5i2.3593
Refbacks
- Saat ini tidak ada refbacks.
##submission.copyrightStatement##
Laman Teorema: https://jurnal.unigal.ac.id/index.php/teorema/index
Terindek: