INVERS MOORE-PENROSE PADA MATRIKS ATAS ALJABAR MAX-PLUS TERSIMETRI
Sari
Teks Lengkap:
PDFReferensi
Baccelli, F. (ed.). (1992). Synchronization and linearity: an algebra for discrete event systems. Chichester; New York: Wiley (Wiley series in probability and mathematical statistics).
Bapat, R. B., Bhaskara, R. K. P. S., & Prasad, K. M. (1990). Generalized inverses over integral domains. Linear Algebra and Its Applications, 140, 181–196. doi: 10.1016/0024-3795(90)90229-6.
Beezer, R. A. (2015). A first course in linear algebra. Gig Harbor, Wash: Congruent Press. Available at: https://open.umn.edu/opentextbooks/BookDetail.aspx?bookId=5 (Accessed: 10 September 2021).
Ben-Israel, A. & Greville, T. N. E. (2003). Generalized inverses: theory and applications. 2nd ed. New York: Springer (CMS books in mathematics, 15).
Bhaskara, R. K. P. S. (1983). On generalized inverses of matrices over integral domains. Linear Algebra and Its Applications, 49, 179–189. doi:10.1016/0024-3795(83)90102-7.
Campbell, S. L., & Meyer, C. D. (2009). Generalized inverses of linear transformations. Philadelphia: Society for Industrial and Applied Mathematics (Classics in applied mathematics, 56).
De, S. B., & De, B. (2002). The QR decomposition and the singular value decomposition in the symmetrized max-plus algebra revisited. SIAM Review, 44(3), 417–454. doi:10.1137/S00361445024039.
Farid, F. O., Khan, I. A., & Wang, Q. W. (2013). On matrices over an arbitrary semiring and their generalized inverses. Linear Algebra and Its Applications, 439(7), 2085–2105. doi:10.1016/j.laa.2013.06.002.
Golub, G. H., & Van. L. C. F. (2013). Matrix computations. Fourth edition. Baltimore: The Johns Hopkins University Press (Johns Hopkins studies in the mathematical sciences).
Hogben, L. (ed.). (2007). Handbook of linear algebra. Boca Raton: Chapman & Hall/CRC (Discrete mathematics and its applications).
Manjunatha, P. K., & Bapat, R. B. (1992). The generalized moore-penrose inverse. Linear Algebra and Its Applications, 165, 59–69. doi:10.1016/0024-3795(92)90229-4.
Pearl, M. H. (1968). Generalized inverses of matrices with entries taken from an arbitrary field. Linear Algebra and Its Applications, 1(4), 571–587. doi:10.1016/0024-3795(68)90028-1.
Pradhan, R., & Pal, M. (2014). Some results on generalized inverse of intuitionistic fuzzy matrices. Fuzzy Information and Engineering, 6(2), 133–145. doi:10.1016/j.fiae.2014.08.001.
Schutter, B. de. (1996). Max-algebraic system theory for discrete event systems.
Xu, S., & Chen, J. (2019). The Moore-penrose inverse in rings with involution. Filomat, 33(18), 5791–5802. doi:10.2298/FIL1918791X.
DOI: http://dx.doi.org/10.25157/teorema.v6i2.5514
Refbacks
- Saat ini tidak ada refbacks.
##submission.copyrightStatement##
Laman Teorema: https://jurnal.unigal.ac.id/index.php/teorema/index
Terindek: