APLIKASI DEKOMPOSISI RANK PADA PEMBENTUKAN INVERS MOORE-PENROSE MATRIKS ATAS ALJABAR MAX-PLUS TERSIMETRI

Suroto Suroto, Najmah Istikaanah, Sri Maryani

Sari


Pada makalah ini dibahas tentang penggunaan dekomposisi rank untuk mengonstruksi invers Moore-Penrose pada matriks atas aljabar max-plus tersimetri. Penentuan eksistensi dekomposisi rank dilakukan dengan memanfaatkan suatu fungsi yang mengkorespondensikan aljabar max-plus tersimetri dengan aljabar konvensional. Selanjutnya, dengan memanfaatkan eksistensi invers setimbang, hasil dekomposisi rank ini digunakan untuk mengonstruksi bentuk invers Moore-Penrose dari matriks. Hasil yang diperoleh adalah bentuk invers Moore-Penrose dari suatu matriks atas aljabar max-plus tersimetri berdasarkan dekomposisi rank. Hasil ini berpotensi dapat dimanfaatkan untuk menentukan solusi dari sistem kesetimbangan linier atas aljabar max-plus tersimetri.

Teks Lengkap:

PDF

Referensi


Agarwal, R. P., & Flaut, C. (2017). An introduction to linear algebra (1st ed.). Chapman and Hall, CRC Press, Taylor & Francis Group.

Anton, H., & Rorres, C. (2014). Elementary linear algebra (11th ed.). Wiley, Canada.

Baccelli, F., Cohen, G., Olsder, G. J., & Quadrat, J.-P. (2001). Synchronization and linearity: an algebra for discrete event systems (2nd ed.). Wiley.

Baksalary, O. M., & Trenkler, G. (2021). The moore-penrose inverse: a hundred years on a frontline of physics research. The European Physical Journal H, 46(9), 1–10.

Barata, J. C. A., & Hussein, M. S. (2012). The moore-penrose pseudoinverse: a tutorial review of the theory. Brazilian Journal of Physics, 42, 146–165.

Bonilla, J. L., Vazquez, R. L., & Beltran, S. V. (2018). Full-rank factorization and moore-penrose’s inverse. MathLab Journal, 1(2), 227–230.

Campbell, S. L., & Meyer, C. D. (2009). Generalized inverses of linear transformations. Society for Industrial and Applied Mathematics.

De Schutter, B. (1996). Max-algebraic system theory for discrete event systems [Dissertation]. Departemen of Electrical Engineering Katholieke Universiteit Leuven.

De Schutter, B., & De Moor, B. (2002). The qr decomposition and the singular value decomposition in the symmetrized max-plus algebra revisited. SIAM Journal on Matrix Analysis and Applications, 44(3), 417–454.

Golub, G. H., & Van Loan, C. F. (2013). Matrix computations (4th ed.). The John Hopkins University Press.

Le Van, T., Nijssen, S., Van Leeuwen, M., & De Raedt, L. (2015). Semiring Rank Matrix Factorization. Journal of Latex Class File, 14(8), 1–14.

Suroto. (2021a). Eigenvalue decomposition of a symmetric matrix over the symmetrized max-plus algebra. Desimal, 4(3), 349–356.

Suroto. (2021b). Invers moore-penrose pada matriks atas aljabar max-plus tersimetri. Jurnal Teorema: Teori dan Riset Matematika, 6(2), 198–209.

Suroto, Istikaanah, N., & Renny. (2022). The existence of the moore-penrose inverse in symmetrized max-plus algebraic matrix. Proceeding of SICOMAS 2021, Advances in Physics Research, 5.

Suroto, Palupi, D. J. E., & Suparwanto, A. (2022a). Characterization of rank of a matrix over the symmetrized max-plus algebra. Jordan Journal of Mathematics and Statistics, 15(4A), 843–856.

Suroto, S., Palupi, D. J. E., & Suparwanto, A. (2022b). The cholesky decomposition of matrices over the symmetrized max-plus algebra. IAENG International Journal of Applied Mathematics, 52(3), 678–683.

Suroto, Suparwanto, A., & Palupi, D. J. E. (2018). The lu decomposition in the symmetrized max-plus algebra. Far East Journal of Mathematical Sciences (FJMS), 108(2), 253–272.

Thapa, G. B., Bonilla, J. L., & Vazquez, R. L. (2018). A note on full-rank factorization of matrix. Journal of the Institute of Engineering, 15(2), 152–154.

Xu, X. (2019). On the Perturbation of the Moore-Penrose Inverse of a Matrix (arXiv:1809.00203). arXiv. http://arxiv.org/abs/1809.00203




DOI: http://dx.doi.org/10.25157/teorema.v8i1.8029

Refbacks

  • Saat ini tidak ada refbacks.


##submission.copyrightStatement##

Laman Teorema: https://jurnal.unigal.ac.id/index.php/teorema/index

Terindek: