Pemodelan Pengaruh Kemiskinan dan Covid-19 Terhadap Ketahanan Pangan Kabupaten Bandung dengan GWR (Geograpichally Weight Regression)

Muthiah Syakirotin, Tuti Karyani, Trisna Insan Noor

Abstract


The Covid-19 pandemic has had an impact on changes in community economic activity, resulting in an impetus for increasing poverty rates (BPS, 2020). This happens because of the community's space for movement so that it has an impact on the community's ability to obtain safe and sufficient food. Based on the 2020 Food Security Index, most districts in West Java are in a very resilient status. The status of food security at the provincial or city/district scale does not always guarantee that every individual is food secure because each region has different characteristics. Therefore, it is necessary to study the model of the influence of the proportion of poverty and the proportion of the population infected with Covid-19 on food security in Bandung Regency to the village level. This study aims to model the effect of the proportion of poverty and the proportion of the population infected with Covid-19 on the resilience of Bandung Regency using Geographically Weight Regression (GWR), which is a geographically weighted regression. Based on the analysis of the model of the effect of the proportion of the population infected with Covid-19 and poverty on food security in Bandung Regency, there are 280 different GWR models. In the GWR model the effect of the proportion of the population infected with Covid-19 on food security, there are 40 villages in red (high influence) and 15 villages in green (low influence). The village that has the highest influence on the proportion of the population infected with Covid-19 is Nengkelan Village with a coefficient of 21.02323822 and Laksana Village has the lowest effect with a coefficient of -18.760392. While the GWR model of the effect of poverty on food security is found in 9 villages in red color and 4 villages in green color. The village with the highest influence is Cipelah Village with a coefficient of 0.661185245 while the village with the lowest influence is Sukaresmi Village with a coefficient of -2.667401414.

References


Aziza, T. N. (2002). Kompleksitas penanganan penguatan ketahanan pangan.

BPS. (2021). Persentase Penduduk Miskin (Headcount Index/P0). 2021.

Caraka, E. ., & Yasin, H. (2017). Geographically Weighted Regression (GWR). Mobius.

Fauzi, M., Kastaman, R., & Pujianto, T. (2019). Pemetaan Ketahanan Pangan Pada Badan Koordinasi. Industri Pertanian, 01, 1–10. http://www.iptek.its.ac.id/index.php/jsh/article/view/633/355

Hasanah, E. A., Heryanto, M. A., Hapsari, H., & Noor, T. I. (2021). Dampak Pandemi Covid-19 Terhadap Pengeluaran Pangan Rumah Tangga Miskin Perkotaan: Studi Kasus Keluarahan Ciroyom, Kecamatan Andir, Kota Bandung. Mimbar Agribisnis: Jurnal Pemikiran Masyarakat Ilmiah Berwawasan Agribisnis, 7(2), 1560. https://doi.org/10.25157/ma.v7i2.5492

Hermanto. (2020). Buletin Perencanaan Pembangunan Pertanian. In Dampak Ekonomi Penyebaran Covid-19 Terhadap Kinerja Sektor Pertanian (Vol. 2). http://perencanaan.setjen.pertanian.go.id/public/upload/file/20200415123744BULETIN-EDISI-KHUSUS.pdf

Iqbal, T. (2021). Kabupaten di Jabar Alami Kemiskinan Ekstrem, 480 Ribu Jiwa Terjerat dan Perlu Uluran Tangan. https://www.pikiran-rakyat.com/jawa-barat/pr-012702069/5-kabupaten-di-jabar-alami-kemiskinan-ekstrem-480-ribu-jiwa-terjerat-dan-perlu-uluran-tangan?page=2

Khairad, F. (2020). Sektor Pertanian di Tengah Pandemi COVID-19 ditinjau Dari Aspek Agribisnis. Jounal Agriuma, 2(2), 82–89. http://www.ojs.uma.ac.id/index.php/agriuma/article/view/4357

Mahdy, I. F. (2021). Pemodelan Jumlah Kasus Covid-19 Di Jawa Barat Menggunakan Geographically Weighted Regression. Seminar Nasional Official Statistics, 2020(1), 138–145. https://doi.org/10.34123/semnasoffstat.v2020i1.642

Nugroho, D., Asmanto, P., & Adji, A. (2020). Leading Indicators Kemiskinan Di Indonesia: Penerapan Pada Outlook Jangka Pendek.

PROPENAS. (n.d.). Program Pembangunan Nasional 2000 - 2004 (PROPENAS). https://www.bappenas.go.id/id/data-dan-informasi-utama/dokumen-perencanaan-dan-pelaksanaan/program-pembangunan-nasional-2000-2004-propenas/

Setyadi, S and Indriyani, L. (2021). Dampak Pandemi COVID-19 Terhadap Peningkatan Resiko Kemiskinan di Indonesia. Jurnal Ekonomi Dan Kebijakan Publik, 4. http://www.oseanografi.lipi.go.id/shownews/202

Sunardi, Soelistijadi, R., & Handayani, D. U. . (2005). Pemanfaatan Analisis Spasial untuk Pengolahan Data Spasial Sistem Informasi Geografi. Jurnal Teknologi Informasi DINAMIK, X(2), 108–116.

Tarigan, H., Sinaga, J. H., & Rachmawati, R. R. (2020). Dampak pandemi covid-19 terhadap kemiskinan di indonesia. 3, 457–479.

van den Berg, H., Gu, B., Grenier, B., Kohlschmid, E., Al-Eryani, S., da Silva Bezerra, H. S., Nagpal, B. N., Chanda, E., Gasimov, E., Velayudhan, R., & Yadav, R. S. (2020). Pesticide lifecycle management in agriculture and public health: Where are the gaps? Science of the Total Environment, 742, 140598. https://doi.org/10.1016/j.scitotenv.2020.140598




DOI: http://dx.doi.org/10.25157/ma.v11i1.17264

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Mimbar Agribisnis : Jurnal Pemikiran Masyarakat Ilmiah Berwawasan Agribisnis

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

___________________________________________________________________________________

Diterbitkan Oleh :

Fakultas Pertanian Universitas Galuh

Jl. RE Martadinata No. 150 Ciamis 46274

Telepon: 0265-7602739

Email: mimbaragribisnis@gmail.com

 

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.

 __________________________________________________________________________________

Mimbar Agribisnis: Jurnal Pemikiran Masyarakat Ilmiah Berwawasan Agribisnis diindeks oleh: