Perbandingan Metode Klastering K-Means dan DBSCAN dalam Identifikasi Kelompok Rumah Tangga Berdasarkan Fasilitas Sosial Ekonomi di Jawa Barat

Siti Mutiah, Yunia Hasnataeni, Anwar Fitrianto, Erfiani Erfiani, L.M. Risman Dwi Jumansyah

Sari


Penelitian ini bertujuan untuk membandingkan efektivitas dua metode klastering, yaitu K-Means dan Density-Based Spatial Clustering of Applications with Noise (DBSCAN), dalam mengelompokkan rumah tangga berdasarkan karakteristik sosial ekonomi di Jawa Barat. Perbandingan kedua metode ini penting karena masing-masing metode memiliki kelebihan dan keterbatasan yang berbeda, K-Means unggul dalam menangani data dengan klaster yang lebih seragam, sedangkan DBSCAN lebih fleksibel dalam mengelola outlier dan klaster tidak teratur yang sering muncul dalam data sosial ekonomi. Data yang digunakan meliputi empat kategori: Fasilitas Rumah Tangga, Ketersediaan dan Kualitas Air, Bantuan Sosial dan Ekonomi, serta Kesejahteraan Ekonomi. Hasil analisis menunjukkan ketimpangan dalam akses fasilitas, air bersih, dan bantuan sosial ekonomi di berbagai wilayah, di mana wilayah seperti Bandung dan Garut lebih unggul dibanding Indramayu dan Cirebon. Motode terbaik dilihat dari nilai silhouette tertinggi. Metode K-Means menghasilkan segmentasi yang lebih terstruktur dengan skor silhouette 0,69, menunjukkan performa yang baik dalam mengelompokkan data dengan karakteristik yang lebih seragam. Sebaliknya, metode DBSCAN, yang lebih fleksibel dalam menangani outlier, menghasilkan 7 klaster dengan 248 noise points dan skor silhouette yang lebih rendah yaitu 0,398, mengindikasikan struktur klaster yang kurang kuat. Perbandingan kedua metode ini relevan dalam konteks klastering rumah tangga di Jawa Barat, di mana K-Means lebih efektif untuk wilayah dengan akses fasilitas yang seragam, sedangkan DBSCAN lebih baik dalam menangkap variasi yang tidak beraturan dan outlier. Penjelasan perbandingan kedua metode ini telah diperinci lebih lanjut untuk mencakup bagaimana variasi akses sosial ekonomi di berbagai wilayah memengaruhi efektivitas masing-masing metode sehingga memberikan pemahaman yang lebih mendalam tentang keunggulan dan keterbatasan keduanya dalam menangani heterogenitas data social ekonomi di Jawa Barat.Kata kunci: DBSCAN, K-Means, Klastering, Susenas

Teks Lengkap:

PDF

Referensi


Adha, R., Nurhaliza, N., & Soleha, U. (2021). Perbandingan algoritma DBSCAN dan K-Means clustering untuk pengelompokan kasus Covid-19 di dunia. Jurnal Sains, Teknologi Dan Industri, 18(2), 206–211.

Awad, F. H., & Hamad, M. M. (2022). Improved k-Means clustering algorithm for big data based on distributed smartphone neural engine processor. Electronics, 11(6), 1-20.

Biantara, B., Rohana, T., & Ratna Juwita, A. (2023). Perbandingan Algoritma K-Means dan DBSCAN untuk Pengelompokan Data Penyebaran Covid-19 Seluruh Kecamatan di Provinsi Jawa Barat. Scientific Student Journal for Information, Technology and Science, IV(1), 88–94.

Cahapin, E. L., Malabag, B. A., Santiago, C. S., Reyes, J. L., Legaspi, G. S., & Adrales, K. L. (2023). Clustering of students admission data using k-means, hierarchical, and DBSCAN algorithms. Bulletin of Electrical Engineering and Informatics, 12(6), 3647–3656. https://doi.org/10.11591/eei.v12i6.4849

Fahmiyah, I., & Ningrum, R. A. (2023). Human development clustering in Indonesia: Using K-Means method and based on Human Development Index categories. Journal of Advanced Technology and Multidiscipline, 2(1), 27–33.

Farahnakian, F., Nicolas, F., Farahnakian, F., Nevalainen, P., Sheikh, J., Heikkonen, J., & Raduly-Baka, C. (2023). A comprehensive study of clustering-based techniques for detecting abnormal vessel behavior. Remote Sensing, 15(6), 1-34.

Kesuma, R., & Purwoto, A. (2022). Pengelompokan Kabupaten/Kota Berdasarkan Indikator Rumah Layak Huni di Provinsi Jawa Barat Tahun 2020. Seminar Nasional Official Statistics, 2022(1), 995–1004. https://doi.org/10.34123/semnasoffstat.v2022i1.1303

Möllensiep, D., Schäfer, J., Pasch, F., & Kuhlenkötter, B. (2024). Cluster analysis for systematic database extension to improve machine learning performance in double-sided incremental sheet forming. International Journal of Advanced Manufacturing Technology, 133(9–10), 4301–4315.

Novianti, P., Setyorini, D., & Rafflesia, U. (2017). K-means cluster analysis in earthquake epicenter clustering. International Journal of Advances in Intelligent Informatics, 3(2), 87–89

Nurhaliza, N., & Mustakim. (2021). Clustering of data Covid-19 cases in the world using DBSCAN algorithms. IJIRSE: Indonesian Journal of Informatic Research and Software Engineering, 1(1), 1–8.

Pranata, K. S., Gunawan, A. A. S., & Gaol, F. L. (2022). Development clustering system IDX company with K-means algorithm and DBSCAN based on fundamental indicator and ESG. Procedia Computer Science, 216, 319–327.

Purnama, E. S. (2013). Pertumbuhan Ekonomi ( Studi Kasus Pada 12 Provinsi Di Indonesia ). 1–11.

Puspitasari, P. A., Faidah, D. Y., & Hendrawati, T. (2024). Grouping Regencies / Cities In West Java Province Based On People ’ S Welfare Indicators Using Biplot And Clustering. 18(3), 1839–1852.

Ridzki, M. M., Hadijah, I., Mukidin, M., Azzahra, A., & and Nurjanah, A. (2023). K-Means algorithm method for clustering best-selling product data at XYZ grocery stores. International Journal of Social Service and Research, 3(12), 3354–3367.

Rohalidyawati, W., Rahmawati, R., & Mustafid, M. (2020). Segmentasi pelanggan e-money dengan menggunakan algoritma DBSCAN (Density Based Spatial Clustering Applications With Noise) di Provinsi DKI Jakarta. Jurnal Gaussian, 9(2), 162–169.

Setiawati, E., Fernanda, U. D., & Agesti, S. (2024). Implementation of K-Means , K-Medoid and DBSCAN Algorithms In Obesity Data Clustering. IJATIS: Indonesian Journal of Applied Technology and Innovation Science, 23–29. https://journal.irpi.or.id/index.php/ijatis

Sisca Agustin Diani Budiman, Diah Safitri, & Dwi Ispriyanti. (2016). Perbandingan Metode K-Means dan Metode DBSCAN Pada Pengelompokan Rumah Kost Mahasiswa di Kelurahan Tembalang Semarang. Jurnal Gaussian, 5(4), 757–762.

Suraya, S., Sholeh, M., & and Lestari, U. (2023). Evaluation of data clustering accuracy using K-Means algorithm. International Journal of Multidisciplinary Approach Research and Science, 2(1), 385–396.

Wahyuni, W., Dwiarto, R., Suwarno, R. S., & Giyanto, B. (2023). Evaluasi Kebijakan Perlindungan Sosial dan Pengentasan Kemiskinan Melalui Program Keluarga Harapan (PKH). Jurnal Pembangunan Dan Administrasi Publik, 5(2), 11–22.

Wulandari, V., Syarif, Y., Alfian, Z., Althof, M. A., & Mufidah, M. (2024). Comparison of density-based spatial clustering of applications with noise (DBSCAN), K-Means and X-Means algorithms on shopping trends data. IJATIS: Indonesian Journal of Applied Technology and Innovation Science, 1(1), 1–8.

Zhang, J., Zhang, M., Yu, Y., & Yu, R. (2024). An innovative method integrating run theory and DBSCAN for complete three-dimensional drought structures. Science of the Total Environment, 926.




DOI: http://dx.doi.org/10.25157/teorema.v9i2.16290

Refbacks

  • Saat ini tidak ada refbacks.


##submission.copyrightStatement##

Laman Teorema: https://jurnal.unigal.ac.id/index.php/teorema/index

Terindek: