PERAMALAN INDEKS PEMBANGUNAN MANUSIA (IPM) KABUPATEN BOJONEGORO MENGGUNAKAN METODE DOUBLE EXPONENTIAL SMOOTHING BROWN
Sari
Teks Lengkap:
PDFReferensi
Airlangga, G., Rachmat, A., & Lapihu, D. (2019). Comparison of exponential smoothing and neural network method to forecast rice production in Indonesia. Telkomnika (Telecommunication Computing Electronics and Control), 17(3), 1367–1375. https://doi.org/10.12928/TELKOMNIKA.V17I3.11768
Bappeda, B. (2020). Penyusunan IPM Kecamatan dan Kabupaten Bojonegoro 2020. Badan Perencanaan Pembangunan Daerah Kabupaten Bojonegoro. https://bappeda.bojonegorokab.go.id
Billah, B., King, M. L., Snyder, R. D., & Koehler, A. B. (2006). Exponential smoothing model selection for forecasting. International Journal of Forecasting, 22(2), 239–247. https://doi.org/10.1016/j.ijforecast.2005.08.002
Bojonegoro, B. (2013). Rencana Pembangunan Jangka Panjang Daerah (RPJPD) Kabupaten Bojonegoro 2005-2025. Badan Perencanaan Pembangunan Daerah Kabupaten Bojonegoro. https://bappeda.bojonegorokab.go.id
BPS, J. T. (2020). Jawa Timur dalam angka 2020. BPS Jawa Timur. https://jatim.bps.go.id
Dewi, N. L. S. D., & Sutrisna, I. ketut. (2012). Pengaruh komponen indeks pembangunan manusia terhadap pertumbuhan ekonomi Provinsi Bali. E-Jurnal Ekonomi Pembangunan Universitas Udayana, 3(3), 106–114.
Fauziah, F. N., & Gunaryati, A. (2017). Comparison forecasting with double exponential smoothing and artificial neural network to predict the price of sugar. 1–8. https://doi.org/10.5013/IJSSST.a.18.04.13
Gyo, M., & Kim, S. (2013). Efficient jitter compensation using double exponential smoothing. Information Sciences, 227, 83–89. https://doi.org/10.1016/j.ins.2012.12.008
Hansun, S. (2016). A new approach of brown’s double exponential smoothing method in time series analysis. Balkan Journal of Electrical and Computer Engineering, 4(2), 75–78. https://doi.org/10.17694/bajece.14351
Hyndman, R. J., Koehler, A. B., Snyder, R. D., & Grose, S. (2002). A state space framework for automatic forecasting using exponential smoothing methods. International Journal of Forecasting, 18, 439–454. www.elsevier.com/ locate / ijforecast
Irawan, R. Y., & Laksito, W. (2019). Penerapan metode double exponential smoothing untuk peramalan tingkat indeks pembangunan manusia. Journal TIKomSIN, 7(2), 18–28. https://doi.org/https://doi.org/10.30646/tikomsin.v7i2.437
Ismail, Z., & Yeng, F. F. (2011). Genetic algorithm for parameter estimation in double exponential smoothing. Australian Journal of Basic and Applied Sciences, 5(7), 1174–1180.
Jahring, & Pradani, A. P. (2016). Forecasting with double exponential smoothing brown method. Journal of Math Science, 1(2), 35–39. http://usnsj.com/index.php/JMS/article/view/JMS006
Jr, J. J. L. (2003). Double Exponential smoothing: an alternative to kalman filter-based predictive tracking. International Immersive Projection Technologies Workshop.
Liantoni, F., & Agusti, A. (2018). Forecasting bitcoin using double exponential smoothing method based on mean absolute percentage error. International Journal on Informatics Visualization, 4(2), 91–95.
Lukman, M., & Tanan, B. (2021). Time Series modeling by using exponential smoothing technique for river flow discharge forecasting (case study: cabenge, walanae, and cenranae rivers system). IOP Conference Series: Materials Science and Engineering, 1088(1), 012100. https://doi.org/10.1088/1757-899x/1088/1/012100
Mirza, D. S. (2012). Pengaruh kemiskinan, pertumbuhan ekonomi, dan belanja modal terhadap indeks pembangunan manusia di jawa tengah tahun 2006-2009. Economics Development Analysis Journal, 1(1). http://journal.unnes.ac.id/sju/index.php/edaj
Muchayan, A. (2019). Comparison of holt and brown’s double exponential smoothing methods in the forecast of moving price for mutual funds. Journal of Applied Science, Engineering, Technology, and Education, 1(2), 183–192. https://doi.org/https://doi.org/10.35877/454RI.asci1167
Ouedraogo, N. S. (2013). Energy consumption and human development : evidence from a panel cointegration and error correction model. Energy, 63(1A), 28–41. https://doi.org/10.1016/j.energy.2013.09.067
Rana, M., & Koprinska, I. (2016). Neurocomputing forecasting electricity load with advanced wavelet neural networks. Neurocomputing, 182, 118–132. https://doi.org/10.1016/j.neucom.2015.12.004
Sagar, A. D., & Najam, A. (1998). The human development index: a critical review. Ecological Economics, Elsevier, 25 (3), 249–264.
Saputra, N. D., Aziz, A., & Harjito, B. (2017). Parameter optimization of brown’s and holt’s double exponential smoothing using golden section method for predicting Indonesian Crude Oil Price (ICP). Proceedings-2016 3rd International Conference on Information Technology, Computer, and Electrical Engineering, ICITACEE 2016, 356–360. https://doi.org/10.1109/ICITACEE.2016.7892471
Setiawan, M. B., & Hakim, A. (2008). Indeks pembangunan manusia indonesia. Jurnal Ekonomia, 9(1), 18–26.
Syafwan, H., Syafwan, M., Syafwan, E., & Hadi, A. F. (2021). Forecasting unemployment in north sumatra using double exponential smoothing method. J. Phys. Conf, 1783 (1), https://doi.org/10.1088/1742-6596/1783/1/012008
Tang, J., Xu, G., Wang, Y., Wang, H., Zhang, S., & Liu, F. (2013). Traffic flow prediction based on hybrid model using double exponential smoothing and support vector machine. Proceedings of the 16th International IEEE Annual Conference on Intelligent Transportation Systems (ITSC 2013), 130–135.
Ubeyli, E. D. (2005). Adaptive neuro-fuzzy inference system for classification of eeg signals using wavelet coefficients. Journal of Neuroscience Methods, 148(2), 113-121 https://doi.org/10.1016/j.jneumeth.2005.04.013
Wang, J., Wang, J., Zhang, Z., & Guo, S. (2011). Expert systems with applications forecasting stock indices with back propagation neural network. Expert Systems With Applications, 38(11), 14346–14355. https://doi.org/10.1016/j.eswa.2011.04.222
Wang, J., Wang, J., Zhang, Z., & Guo, S. (2012). Stock index forecasting based on a hybrid model. Omega, 40(6), 758–766. https://doi.org/10.1016/j.omega.2011.07.008
Winarti, A. (2014). Analisis pengaruh pengeluaran pemerintah bidang pendidikan, kemiskinan, dan pdb terhadap indeks pembangunan manusia di indonesia periode 1992-2012. Skripsi. Fakultas Ekonomika dan Bisnis, Universitas Diponegoro, Semarang.
Zhang, G. P. (2003). Time series forecasting using a hybrid arima and neural network model. Neurocomputing, 50, 159–175. www.elsevier.com/locate/neucom
DOI: http://dx.doi.org/10.25157/teorema.v6i2.5521
Refbacks
- Saat ini tidak ada refbacks.
##submission.copyrightStatement##
Laman Teorema: https://jurnal.unigal.ac.id/index.php/teorema/index
Terindek: