SOLUSI NUMERIK MASALAH BIO-DEGRADASI PENCEMAR AIR TANAH MENGGUNAKAN METHOD-OF-LINES
Sari
Teks Lengkap:
PDFReferensi
Bamforth, S. M., & Singleton, I. (2005). Bioremediation of polycyclic aromatic hydrocarbons: Current knowledge and future directions. Journal of Chemical Technology and Biotechnology, 80(7), 723–736. https://doi.org/10.1002/jctb.1276
Borden, Robert C. Bedient, P. B. (1986). Transport of dissolved hydrocarbons influenced by oxygen-limited biodegradation. Water Resource Research, 22(13), 1973–1982.
Constanda, C. (2018). Solution techniques for elementary partial differential equations (2nd ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9781315381442
Dawson, C. N., & Wheeler, M. F. (1992). Time-splitting methods for advection-diffusion-reaction equations arising in contaminant transport. Proceedings of the Second International Conference on Industrial and Applied Mathematics, 71–82.
Fardinah, F. (2017). Solusi persamaan diferensial biasa dengan metode runge-kutta orde lima. Jurnal MSA (Matematika dan Statistika Serta Aplikasinya), 5(1), 30. https://doi.org/10.24252/jmsa.v5n1p30
Gupta, R. (2019). Partial differential equations: Finite difference methods. Numerical Methods: Fundamentals and Applications (pp. 679–778). Cambridge University Press.
Hamdi, S., Schiesser, W., & Griffiths, G. (2007). Method of lines. Scholarpedia, 2(7), 2859. https://doi.org/10.4249/scholarpedia.2859
Heath, M. T. (1997). Scientific computing an introductory survey. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 363 (1833).
Julianto, M. T. (2000). Perbaikan kinerja VODPK untuk menyelesaikan sistem PDB biodegradasi pencemar air tanah [Tesis]. Universitas Indonesia.
Munir, R. (2003). Metode numerik. Bandung: Informatika.
Noviyani, D., Yundari, & Yudhi. (2019). Solusi persamaan difusi pada larutan gula dengan metode beda hingga. Bimaster: Buletin Ilmiah Matematika, Statistika, dan Terapannya, 8(3). https://doi.org/10.26418/bbimst.v8i3.34026
Rackauckas, C. (2020). DifferentialEquations.jl: Scientific machine learning (SciML) enabled simulation and estimation. SciML: Scientific Machine Learning Software. https://diffeq.sciml.ai/v6.15/
Rackauckas, C., & Nie, Q. (2017). DifferentialEquations.jl – A performant and feature-rich ecosystem for solving differential equations in Julia. Journal of Open Research Software, 5. https://doi.org/10.5334/jors.151
DOI: http://dx.doi.org/10.25157/teorema.v7i2.7102
Refbacks
- Saat ini tidak ada refbacks.
##submission.copyrightStatement##
Laman Teorema: https://jurnal.unigal.ac.id/index.php/teorema/index
Terindek: