Prediksi Mood Berdasarkan Pola Aktivitas Fisik pada Remaja Menggunakan Algoritma Machine Learning

Autor(s): Mayang Mega Kencana, Jajat Jajat, Mohammad Zaky, Kuston Sutoni
DOI: 10.25157/jkor.v11i1.17895

Abstract

Penelitian ini bertujuan untuk memprediksi mood remaja berdasarkan pola aktivitas fisik menggunakan algoritma machine learning. Aktivitas fisik sering kali berkorelasi erat dengan kondisi emosional, sehingga pendekatan ini dapat memberikan wawasan baru dalam mendukung kesehatan mental. Data dikumpulkan dari 50 remaja mahasiswa melalui perangkat wearable selama 90 hari, mencakup parameter seperti jumlah langkah, durasi aktivitas, intensitas, dan pola tidur. Sementara untuk data mood diperoleh dari skala BRUMs yang sudah diadaptasi dan divalidasi. Algoritma Decision Tree dan Support Vector Machine (SVM) digunakan untuk membangun model prediksi, dengan evaluasi kinerja berdasarkan metrik akurasi, presisi, recall, dan F1-score. Hasil penelitian menunjukkan bahwa Decision Tree lebih unggul dibandingkan SVM, dengan akurasi sebesar 98,44% dibandingkan 97,45%. Decision Tree juga menunjukkan keunggulan dalam interpretasi model dan efisiensi komputasi, yang penting untuk implementasi aplikasi prediktif real-time. Penelitian ini menyimpulkan bahwa algoritma Decision Tree merupakan pendekatan yang lebih efektif untuk prediksi mood berbasis pola aktivitas fisik pada remaja. Temuan ini diharapkan dapat menjadi dasar pengembangan sistem pendukung kesehatan mental berbasis teknologi wearable.  This study aims to predict adolescents' mood based on physical activity patterns using machine learning algorithms. Physical activity is often closely correlated with emotional states, making this approach potentially valuable in providing new insights to support mental health. Data were collected from 50 university students using wearable devices over 90 days, including parameters such as step count, activity duration, intensity, and sleep patterns. Mood data were obtained using the BRUMs scale, which had been adapted and validated. Decision Tree and Support Vector Machine (SVM) algorithms were employed to develop the predictive model, with performance evaluated based on accuracy, precision, recall, and F1-score metrics. The results showed that the Decision Tree outperformed SVM, achieving an accuracy of 98.44% compared to 97.45%. Decision Tree also demonstrated advantages in model interpretability and computational efficiency, which are crucial for implementing real-time predictive applications. This study concludes that the Decision Tree algorithm is a more effective approach for mood prediction based on physical activity patterns in adolescents. These findings are expected to form the foundation for developing mental health support systems based on wearable technology.

Keywords

Physical activity, mental health, machine learning, mood prediction, adolescent

Full Text:

PDF

References

Driver, S., & Ede, A. (2009). Impact of physical activity on mood after TBI. Brain injury, 23(3), 203-212.

Kanning, M., & Schlicht, W. (2010). Be active and become happy: an ecological momentary assessment of physical activity and mood. Journal of sport and exercise psychology, 32(2), 253-261.

Bland, H. W., Melton, B. F., Bigham, L. E., & Welle, P. D. (2014). Quantifying the impact of physical activity on stress tolerance in college students. College student journal, 48(4), 559-568.

Alves, D. G. L., Rocha, S. G., Andrade, E. V., Mendes, A. Z., & Cunha, Â. G. J. (2019). The positive impact of physical activity on the reduction of anxiety scores: a pilot study. Revista da Associação Médica Brasileira, 65, 434-440.

Horne, D., Kehler, D. S., Kaoukis, G., Hiebert, B., Garcia, E., Chapman, S., ... & Arora, R. C. (2013). Impact of physical activity on depression after cardiac surgery. Canadian Journal of Cardiology, 29(12), 1649-1656.

Hidaka, B. H. (2012). Depression as a disease of modernity: explanations for increasing prevalence. Journal of affective disorders, 140(3), 205-214.

Hoge, E., Bickham, D., & Cantor, J. (2017). Digital media, anxiety, and depression in children. Pediatrics, 140(Supplement_2), S76-S80.

Koch, E. D., Tost, H., Braun, U., Gan, G., Giurgiu, M., Reinhard, I., ... & Reichert, M. (2020). Relationships between incidental physical activity, exercise, and sports with subsequent mood in adolescents. Scandinavian Journal of Medicine & Science in Sports, 30(11), 2234-2250.

Jie, Jianda, Zhilin, Rui, & Fugao. (2024). Adolescent mental health interventions: A narrative review of the positive effects of physical activity and implementation strategies. https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2024.1433698/full

Chong, C. S., Tsunaka, M., & Chan, E. P. (2011). Effects of yoga on stress management in healthy adults: a systematic review. Alternative therapies in health and medicine, 17(1), 32.

Cho, G., Yim, J., Choi, Y., Ko, J., & Lee, S. H. (2019). Review of machine learning algorithms for diagnosing mental illness. Psychiatry investigation, 16(4), 262.

Cho, C. H., Lee, T., Kim, M. G., In, H. P., Kim, L., & Lee, H. J. (2019). Mood prediction of patients with mood disorders by machine learning using passive digital phenotypes based on the circadian rhythm: prospective observational cohort study. Journal of medical Internet research, 21(4), e11029.

Cernian, A., Olteanu, A., Carstoiu, D., & Mares, C. (2017, May). Mood detector-on using machine learning to identify moods and emotions. In 2017 21st International Conference on Control Systems and Computer Science (CSCS) (pp. 213-216). IEEE.

Hardwis, S., & Jajat, J. (2024). Analisis Resiko Obesitas Berdasarkan Aktivitas Fisik: Implementasi Metode Artificial Intelligence Machine Learning. Jurnal Keolahragaan, 10(2), 29-36.

Jajat, J., Sudrazat, A., Zaky, M., & Sultoni, K. (2024). Implementation of Artificial Intelligence (AI) Machine Learning for Analysis of Physical Activity Behavior, Sedentary Behavior, and Obesity Risk. Indonesian Journal of Sport Management, 4(4).

Zhang, X., Li, J., & Huang, Y. (2023). The Efficiency of Tree-Based Algorithms in Mood Prediction Applications. Journal of Machine Learning Applications, 15(3), 245-260.

Smith, A., Brown, R., & Davis, K. (2022). Kernel-Based Approaches in Small Dataset Analysis: Challenges and Limitations. International Journal of Data Science, 10(1), 102-115.

Johnson, R., & Wang, P. (2021). Comparative Analysis of Machine Learning Algorithms for Health Monitoring Systems. Data Analytics Review, 8(4), 345-360.

Refbacks

  • There are currently no refbacks.